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Abstract

Multipoint kinetic equation systems have been solved numerically using matrix algebra 
software and 1st to 4th order implicit schemes based on single-step matrix propagators. 
These matrix schemes have been validated successfully on demanding point kinetics 
benchmarks with various prescribed reactivity insertions. Verification tests have also 
been performed on a simple 3-region fast reactor core model with asymmetric step or 
ramp reactivity insertions and cross-checked with the multipoint kinetics SACRE code 
developed at INL and based on existing and validated stiff ODE solver packages. Accurate 
results can be obtained at a limited time expense. The reason for intriguing results 
obtained in some transients has been elucidated and linked to the multipoint matrix 
coefficient interpolation method during the transient.

Keywords: multipoint kinetics equations, implicit matrix methods

1. Introduction

Multipoint kinetics (MPK) is a description tool for the change in time of the neutron field 
in a nuclear reactor, intermediate between the point kinetics (PK) description that 
neglects any change in the spatial distribution of the flux and a full space (3D) + time
kinetic description of the reactor. The system is divided in several fissile regions, each 
considered as a separate point reactor and connected to others by coupling coefficients 
and neutron generation times. Prompt and delayed neutrons are accounted for. It is 
believed that, provided the number and extension of the regions have been chosen with 
physical insight in connection to the response sought for, MPK can capture many features 
of real kinetic transients.

The first multipoint model was derived by Avery (Avery, 1958) in view of application to 
the design of a coupled fast-thermal reactor. Spatial integrations on regions, to obtain the 
multipoint variables and coefficients, are performed after multiplication by weight 
functions with physical meaning. Avery used weight functions connected to the classical 
adjoint flux (neutron importance). An alternate form was derived by Kobayashi 
(Kobayashi, 1991), using Green functions related to the production of next generation 
neutrons. Avery’s and Kobayashi’s models are multipoint in space only, but models 
multipoint in space and in energy have been proposed also (Bosio et al., 2001; Ravetto et 
al, 2004). Avery and Kobayashi provided a technique to compute the coupling coefficients 
between zones using deterministic codes, but another possibility is to use pragmatic
definitions for the coupling coefficients, based on probabilities, opening the way to their 
computation by Monte-Carlo estimators (Aufiero et al. 2016; Laureau et al. 2017a&b).
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We will restrict here to space multipoint models. The goal of the present study was to 
build a simple and quick, but nevertheless accurate, tool to compute prescribed 
transients on multipoint core models, with possible further extensions to transients with 
feedback. Such a tool could be used to gain insight on the quantitative time behaviour of 
spatially decoupled cores (zero power experimental reactors with very different and 
coupled regions, large industrial cores). Using matrix algebra software, this tool will be 
tagged as MATMPK in the following for quick reference. Another incentive to develop 
MATMPK was to provide comparison terms with the existing MPK code, named SACRE,
developed independently at INL (Palmiotti et al., 2018) and help in understanding 
puzzling results obtained by the latter (Palmiotti et al., 2018, and see below).

The kinetic equations describing the evolution of the neutron flux Ψ(�⃗, �, Ω��⃗ , �) and the 

concentrations of the � ≥ 1 families of delayed neutron precursors �(�)(�⃗, �) may be 
written as the following system of (1 + �) equations:

⎩
⎪
⎨

⎪
⎧1

�

�Ψ

��
= ��� − ��Ψ + � ��

(�)
�(�)�(�)

�

���

��(�)

��
= � ��

(�)
Σ�Ψ ����Ω − �(�)�(�)

(1)

F is the operator governing the neutron production by fission, i.e. the sum of �� (prompt 

fission production operator) and �� (delayed fission production operator). A is the 
operator grouping the scattering, streaming and collision terms:

��Ψ = ��(�, Ω��⃗ ) � ��� �� Ω� ��(�⃗, ��, �) Σ�(�⃗, ��, �)Ψ(�⃗, ��, Ω��⃗ �, �) (2)

��Ψ = � ��
(�)

(�, Ω��⃗ ) � ��� �� Ω���
(�)(�⃗, ��, �) Σ�(�⃗, ��, �)Ψ(�⃗, ��, Ω��⃗ �, �)

�

���

(3)

�Ψ = Ω��⃗ ∙ ∇��⃗ Ψ + Σ�Ψ − � �����Ω� Σ�(�⃗, �′ → �, Ω��⃗ � → Ω��⃗ )Ψ��⃗, ��, Ω��⃗ �� (4)

Fission spectrum normalization is: ∫ ����Ω �(�, Ω��⃗ ) = 1 (5)

Eq.(1) is a system of coupled equations for the neutron flux and the precursor 
concentrations. But hereafter, for quick reference, any equation containing the time 
derivative of the flux will be called a flux equation, and any equation containing the time 
derivative of a precursor concentration will be called a precursor equation. In equation 
systems such as Eq.(1), only one line for the flux equations and one line for the precursor 
equations will be written; indices will avoid confusion (e.g. the second line in Eq.(1) being 
indexed by (�), represents � precursor equations)

The classical derivation of PK equations, dating back to (Henry, 1958) is reminded in 
Appendix. The multipoint equations are derived in Section 2 for Avery’s and Kobayashi’s
models, together with the definition of all the coupling coefficients and the way these 
coefficients can be approximated for their calculation in deterministic codes. Assuming 
the coupling coefficients, produced by any suitable method, are available, the PK and MPK 
variables obey systems of linear ordinary differential equations: (1 + �) equations for PK 
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and, if � is the number of fissile regions �(1 + �) equations for Kobayashi’s MPK 
formulation and �(� + �) equations for Avery’s MPK formulation. These linear systems 
can be cast in a vector-matrix format, and Section 3 presents the derivation of 
approximate single-step matrix propagators over a time interval ∆�: those yielding the 
well-known first (implicit Euler) and second (Crank-Nicolson) order methods, and two 
more complex ones, based on Newton-Cotes quadrature formulas, resulting in third and 
fourth order methods. In this same section, a short reminder of the structure and 
capabilities of the SACRE code developed at INL is provided.

The free and open source software Scilab (Scilab Enterprises, 2012) has been used to 
code these matrix propagators in order to test and validate them. Scilab is used as a 
toolbox for fast (compiled) and accurate solvers for matrix algebra operations, here 
mainly matrix product, inversion and exponentiation. Its interpreted user’s language has 
been used to write scripts performing all ancillary tasks (fill in the matrices, organize the 
loops and tests, call the built-in pre-compiled functions, print the results).

Section 4 presents the verification of MATMPK on demanding PK benchmarks (Ganapol, 
2013), with benchmark 10-digit objective values for three kinds of prescribed reactivity 
injection (step, ramp, sinusoidal). Attention is given on accuracy vs. time step size, and to 
CPU times. In Section 5 a simple 3-region fast reactor model with 2/3 rotation symmetry 
in its reference configuration is defined; the kinetic transients are based on extraction of 
a single control rod, breaking the symmetry of the core. The coupling coefficients
necessary to MATMPK are computed using the ERANOS code system (Ruggieri et al., 
2006), and two simple verification tests are performed: a step insertion (the control rod 
is extracted instantaneously) and a ramp insertion (progressive extraction of the control 
rod). The step insertion can be validated against an analytical solution obtained by matrix 
exponentiation; for the ramp insertion, a qualitative match with physical insight is sought 
for. With respect to the previous PK benchmarks, additional attention is given to shape 
variations, i.e. the progressive change in the balance of fission rates in the three fissile 
regions of the core. Finally, Section 6 is devoted to the comparison of results provided by 
MATMPK and SACRE on a same 3-region problem. In addition, the reason for intriguing 
results previously obtained by SACRE when modelling the same transient by various 
methods (PK, MPK with various subdivisions of the reactor into regions) has been 
elucidated and linked to the multipoint matrix coefficient interpolation method used 
during the transient.

2. Derivation of the multipoint equations

The usual technique (Henry, 1958; Avery, 1958; Komata, 1969; Kobayashi, 1992) is to 
multiply the kinetics equations Eq.(1) by one or several weight functions and to integrate 
over space, energy and angle. We shall use the following notation for the functional scalar 
product so defined:

< �, � > = � ��� �� ��Ω ���⃗, �, Ω��⃗ � ���⃗, �, Ω��⃗ � (6)

The usual derivation of PK equations (Henry, 1958) is recalled in Appendix. The weight 
function used in this case is a critical adjoint flux, and the lumped parameter obtained 
from the neutron flux is called the neutron population or amplitude. In the MPK models 
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of Kobayashi and Avery, the lumped parameters obtained from the neutron flux are more 
directly related to region-wise fission source rates.

2.1. Kobayashi’s MPK equations

The system is partitioned into � distinct fissile regions. �� is the function equal to 1 in 
region �, 0 elsewhere. The precursor concentrations, divided into � time families, are 
split into:

�(�) = ∑ ��
(�)�

���      with     ��
(�)

= ���(�) (� = 1, ⋯ , �) (7)

Each of the � precursor equations is split into � equations (by multiplication by the ��), 
so that Eq.(1) can be written as the following system of 1 flux equation and �� precursor 
equations :

⎩
⎪
⎨

⎪
⎧1

�

�Ψ

��
= ��Ψ − �Ψ + � �(�)��

(�)
� ��

(�)

�

���

�

���

���
(�)

��
= � ��

(�)
Σ��Ψ ����Ω − �(�)��

(�)

(8)

where Σ�� = ��Σ� is the restriction of the fission cross-section to region �. For the flux

equations a weight function �� is defined for each region and we obtain the following set 
of �(1 + �) equations (� flux equations and �� precursor equations):

⎩
⎪
⎨

⎪
⎧< �� ,

1

�

�Ψ

��
> = < �� , ��Ψ > − < �� , �Ψ > + � �(�) � < �� , ��

(�)
��

(�)
>

�

���

�

���

<
���

(�)

��
> = < ��

(�)
Σ��Ψ > − �(�) < ��

(�)
>

(9)

(for ��
(�)

integration is on space only). The weight function �� chosen by Kobayashi is the 
function ��

� obeying the source equation:

����
� = �Σ�� (10)

This choice is meant to make the term < �� , �Ψ > in Eq.(9) equal to the fission source
in region �, �� = < ��Ψ > (�� = ��� is the restriction of the production operator to 
region �), which will be one of the unknowns of the final MPK set of equations:

< ��
� , �Ψ > = < ����

� , Ψ > = < �Σ��Ψ > = < ��Ψ > = �� (11)

By its definition in Eq.(10), ��
�(�⃗, �, Ω��⃗ ), defined over the whole system, represents the 

expected value for the number of neutrons produced at next generation in region � for 1 

current generation neutron placed at (�⃗, �, Ω��⃗ ).

The other terms in Eq.(9) can be worked out as follows (definitions for the integral 
kinetics parameters are given directly in the equations) :
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< ��
� , ��Ψ > = �

< ��
� , (�� − ���)Ψ >

< ��
� , ��Ψ >

∙
< ��

� , ��Ψ >

< ��Ψ >
∙< ��Ψ >

�

���

≝ �(1 − ���)�����

�

���

(12)

��� is the expected number of neutrons produced at next generation in region � for 1 
neutron produced at current generation in region � and is called a coupling coefficient;
the matrix K such as ��� = ��� being called the coupling matrix. ��� is the fraction of 
delayed neutrons produced at next generation in region � by neutrons produced at 
current generation in region � due to delayed neutrons produced at current generation 
in region �.

< ��
� ,

1

�

�Ψ

��
> =

< ��
� ,

1
�

�Ψ
�� >

<
�(��Ψ)

��
>

<
�(��Ψ)

��
> ≝ ℓ�

���

��
(13)

ℓ� has the dimensionality of time. It is the ratio of the number of neutrons produced at 
next generation in region � by excess neutrons originating from the whole system to the 
increase of production rate in region �, and may be considered an average time needed 
by prompt neutrons to reach region � and generate next generation neutrons.

� �(�) � < ��
� , ��

(�)
��

(�)
>

�

���

�

���

= � �(�) �
< ��

� , ��
(�)

��
(�)

>

< ��
(�)

>
< ��

(�)
>

�

���

�

���

≝ � �(�) � ���
(�)

< ��
(�)

>

�

���

�

���

(14)

���
(�)

is the expected number of neutrons produced at next generation in region � for 1 
delayed neutron of family � produced at current generation in region �; we can also group 
them into matrices �(�) called delayed coupling matrices.

< ��
(�)

Σ��Ψ > =
< ��

(�)
Σ��Ψ >

< ��Ψ >
∙< ��Ψ > ≝ ��

(�)
��

(15)

��
(�)

is the raw delayed neutron fraction for family � in region �. The �(1 + �) Kobayashi 

multipoint equations are then, keeping the notation ��
(�)

for < ��
(�)

>:

⎩
⎪
⎨

⎪
⎧ℓ�

���

��
= (1 − ��) � �����

�

���

− �� + � �(�) � ���
(�)

��
(�)

�

���

�

���

���
(�)

��
= ��

(�)
�� − �(�)��

(�)

(16)

So far, all the involved coefficients are written using the unknown dynamic flux Ψ(�), but 
they can be approximated by using instead of  the static flux  of the associated critical 
problem, solution of

�
�

��
− �� Φ = 0 (17)
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the operators being taken at current time. For the generation times, we assume an 
asymptotic exponential regime where the derivatives of funtions are proportional to the
functions themselves, with identification of the time eigenfunction with the 
multiplication factor eigenfunction of Eq.(17). This way we obtain the following set of 
approximate point kinetic parameters for the Kobayashi equations:

��� ≈
���

� ,����

�����
���

(�)
≈

���
� ,���

(�)
��

��
��
(�)

��

��� ≈
���

� ,�����

���
� ,����

��
(�)

≈
���

(�)
�����

�����

ℓ� ≈
���

� ,
�

�
��

�����

(18)

2.2. Avery’s MPK equations

With respect to the Kobayashi approach, the neutron flux  is also split into a sum of 
partial fluxes:

Ψ = � Ψ�

�

���

(19)

Here Ψ� is defined as the partial flux due to only the neutrons (prompt and delayed) 
produced in region �. Hence, the kinetic equations, Eq.(1), become the following system 
of �(1 + �) equations (� flux equations + �� precursor equations):

⎩
⎪
⎨

⎪
⎧1

�

�Ψ�

��
= ���Ψ − �Ψ� + � ��

(�)
�(�)��

(�)

�

���

���
(�)

��
= � ��

(�)
Σ��Ψ ����Ω − �(�)��

(�)

(20)

In the flux equations, the prompt and delayed fission neutron sources are strictly 
localized to region �, but as operator A includes spatial derivatives, the Ψ� are non-zero 
over the whole system (although they may decrease sharply outside region �). When 
starting from an initial static critical configuration Ψ� = Φ�, the initial values of the 
partial fluxes, Ψ��, are solution of the � sub-critical source problems

��� − �����Ψ�� = ∑ ��
(�)

�(�)���
(�)�

���      with     ���
(�)

=
��

(�)
������

�(�)
(21)

Here again, we associate to each region � = 1, ⋯ , � a weight function �� defined over 
the whole system and we integrate to obtain the following system of �(� + �) equations
(�� flux equations + �� precursor equations:

⎩
⎪
⎨

⎪
⎧< �� ,

1

�

�Ψ�

��
> = < �� , ���Ψ > − < �� , �Ψ� > + � �(�) < �� , ��

(�)
��

(�)
>

�

���

<
���

(�)

��
> = < ��

(�)
Σ��Ψ > −�(�) < ��

(�)
>

(22)
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We could use also here the weight functions defined by Kobayashi in Eq.(10), but Avery 
followed another path. His choice for the weight function �� is a multiple of the “partial 
static adjoint flux” Φ�

� solution of the source equation

��Φ�
� =

��

��
��Φ� =

1

��
��

�Φ� (23)

Where Φ� is a fundamental solution of the associated adjoint critical problem:

�
��

��
− ��� Φ� = 0 (24)

(this is the equation adjoint to Eq.(17)). By construction, we have:

� Φ�
�

�

���

= Φ� (25)

Then, through simple algebraic manipulations:

< Φ�
� , �Ψ� > = < ��Φ�

� , Ψ� > =
1

��
< ��

�Φ�, Ψ� > =
1

��
< Φ�, ��Ψ� > (26)

The multiplicative coefficient �� in �� = ��Φ�
� is chosen to ensure a summation to the 

fission source of region � as follows:

��

��
� < Φ�, ��Ψ� >

�

���

=
��

��
< Φ�, ��Ψ > = < ��Ψ >

⇒ �� = ��

< ��Ψ >

< Φ�, ��Ψ >

(27)

Then we can define the partial fission sources, which will be part of the unknowns in the 
final MPK equations, as:

��� =
< ��Ψ >∙< Φ�, ��Ψ� >

< Φ�, ��Ψ >

�� = � ���

�

���

= < ��Ψ >

(28)

��� can be interpreted as the part of the fission rate �� due to only the neutrons 
originated by neutrons produced in region �. The first term in the right hand side of the 
flux equations in Eq.(22) can be developed as:

�� < Φ�
� , ���Ψ >

< ��Ψ >

< Φ�, ��Ψ >

=
< Φ�

� , ��Ψ > − < Φ�
� , ���Ψ >

< Φ�
� , ��Ψ >

∙ ��

< ��Ψ >∙< Φ�
� , ��Ψ >

< ��Ψ >∙< Φ�, ��Ψ >
∙ < ��Ψ >

≝ (1 − ���)�����

(29)

Similarly the left hand side term is developed as:
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� < Φ�
� ,

1

�

�Ψ�

��
>

< ��Ψ >

< Φ�, ��Ψ >
= �

< Φ�
� ,

1
�

�Ψ�

�� >

����

��

< ��Ψ >

< Φ�, ��Ψ >
∙

����

��

≝ ℓ��

����

��

(30)

ℓ�� has the dimensionality of time and may be considered an average time needed by 
neutrons born in region � to reach region � and generate next generation neutrons. The 
coupled flux-precursor term is developed as:

� < Φ�
� , ��

(�)
��

(�)
>

< ��Ψ >

< Φ�, ��Ψ >
= �

< Φ�
� , ��

(�)
��

(�)
>

< ��
(�)

>

< ��Ψ >

< Φ�, ��Ψ >
∙< ��

(�)
> (31)

and written, with notation abuse (��
(�)

for < ��
(�)

>):

< Φ�
� , ��

(�)
��

(�)
>

< ��Ψ >

< Φ�, ��Ψ >
≝ ���

(�)
��

(�)
(32)

In the precursor equations we define also:

< ��
(�)

Σ��Ψ > =
< ��

(�)
Σ��Ψ >

< �Σ��Ψ >
∙< �Σ��Ψ > ≝ ��

(�)
�� (33)

Finally, the �(� + �) Avery MPK equations are:

⎩
⎪
⎨

⎪
⎧ℓ��

����

��
= (1 − ���)����� − ��� + � �(�)���

(�)
��

(�)

�

���

���
(�)

��
= ��

(�)
�� − �(�)��

(�)

(34)

The formal manipulations leading to the sources and coefficients defined in Eq.(28, 29, 
30, 32, 33) involve the unknown kinetic flux . These coefficients are approached using 
the static flux of the associated critical problem, Eq.(17), and its partial fluxes:

�Φ� =
1

��
��Φ (35)

We have then:

��� ≈
�����∙���,�����

���,����
��� ≈ ��

�����∙���
� ,����

�����∙���,����

��� ≈
���

� ,�����

���
� ,����

��
(�)

≈
���

(�)
�����

�����

(36)

For the ��� coefficients, through the definition of partial fluxes Eq.(23, 35):

< Φ�
� , ��Φ > = �� < Φ�

� , �Φ� > = �� < ��Φ�
� , Φ� >

= < ��
�Φ�, Φ� > = < Φ�, ��Φ� >

(37)

This relation allows falling back on Avery’s definition for the ��� (Avery, 1958):

��� ≝ ��

< ��Φ >∙< Φ�, ��Φ� >

< ��Φ >∙< Φ�, ��Φ >
= ��

���

��

(38)
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For the generation times, an asymptotic exponential regime is assumed, where the 
derivatives are proportional to the functions, and the time eigenfunction is identified with 
the multiplication factor eigenfunction:

ℓ�� ≈ �
< Φ�

� ,
1
� Φ� >

���

< ��Φ >

< Φ�, ��Φ >
= �

< Φ�
� ,

1
� Φ� >

< Φ�, ��Φ� >
(39)

And finally, the precursor distribution is assumed proportional to the neutron production 
distribution of the associated critical problem:

���
(�)

≈ ��

< ��Φ >∙< Φ�
� , ���

(�)
Φ >

< ���
(�)

Φ >∙< Φ�, ��Φ >
(40)

2.3. Formal comparisons of the MPK models

2.3.1. Basic features

Table 1 recapitulates the number of equations, weight functions and approximate 
formulations for kinetic coefficients based on the calculation of static fluxes.

Table 1 – Multipoint model comparison

Kobayashi Avery

�(1 + �) equations �(� + �) equations

Weights: ��
�

����
� = �Σ��

Weights: Φ�
�

��Φ�
� =

1

�
��

�Φ�

ℓ� ≈
< ��

� ,
1
� Φ >

< ��Φ >
ℓ�� ≈ �

< Φ�
� ,

1
� Φ� >

< Φ�, ��Φ� >

��� ≈
< ��

� , ���Φ >

< ��
� , ��Φ >

��� ≈
< Φ�

� , ��Φ� >

< Φ�
� , �Φ� >

��� ≈
< ��

� , ��Φ >

< ��Φ >
��� ≈ �

< ��Φ >∙< Φ�, ��Φ� >

< ��Φ >∙< Φ�, ��Φ >

���
(�)

≈
< ��

� , ���
(�)

Φ >

< ���
(�)

Φ >
���

(�)
≈ �

< ��Φ >∙< Φ�
� , ���

(�)
Φ >

< ���
(�)

Φ >∙< Φ�, ��Φ >

��
(�)

≈
< ��

(�)
Σ��Φ >

< ��Φ >
��

(�)
≈

< ��
(�)

Σ��Φ >

< ��Φ >

2.3.2. Reduction of Avery’s model to Kobayashi’s model

Summing the � Avery flux equations having � as first index yields:
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� ℓ��

����

��

�

���

= �(1 − ���)�����

�

���

− �� + � �(�) � ���
(�)

��
(�)

�

���

�

���

(41)

This means that we can have a formal identification to Kobayashi’s model (at a given 
moment) if:

ℓ� ≡
∑ ℓ��

����

��
�
���

∑
����

��
�
���

(42)

This agrees with the interpretations of ℓ�� as the average time needed for neutrons born 
in region � to reach region � and produce next generation neutrons, and ℓ� as the 
average time for neutrons born in the whole system to reach region � and produce next 
generation neutrons.

2.3.3. Reduction of multipoint to point model

For a single region (� = 1), both Kobayashi and Avery sets of equations reduce to:

⎩
⎪
⎨

⎪
⎧ℓ

��

��
= [(1 − �)� − 1]� + � �(�)�(�)�(�)

�

���

��(�)

��
= �(�)� − �(�)�(�)

(43)

If we divide the first equation by �ℓ and multiply the precursor equations by 
�(�)

�ℓ
we get:

⎩
⎪
⎨

⎪
⎧ ��

��
=

� − �

ℓ
� + � �(�)

�(�)

�ℓ
�(�)

�

���

�(�)

�ℓ

��(�)

��
=

�(�)�(�)

�ℓ
� − �(�)

�(�)

�ℓ
�(�)

(43)

Then, defining

��(�) =
�(�)

�
�(�) ��� ��(�) =

�(�)

�
�(�) (44)

and assuming
�(�)

�ℓ
to be constant, we get:

⎩
⎪
⎨

⎪
⎧��

��
=

� − �

ℓ
� + � �(�)��(�)

�

���

���(�)

��
=

��(�)

ℓ
� − �(�)��(�)

(45)

Which is formally the same equation as Eq.(81) in Appendix. Note that from Eq.(18) or 
from Eq.(36,40) we can check that ∑ ��(�)�

��� = �. However, different choices for the 
weight function (�� for Kobayashi, Φ� for Avery and the traditional PK) will make the 
numerical values of the PK coefficients, even if computed at the same time, slightly 
different.
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2.3.4. Prompt jump formulas

The prompt jump formula can be established readily for the point kinetics model (Eq. 
(81) in Appendix). Starting from a initial critical state with amplitude �� and equilibrium 

precursor concentrations such as �(�)���
(�)

=
�� (�)

ℓ
��, an instantaneous reactivity jump is 

performed, and the reactivity is kept constant at its new value. If positive, this reactivity 
insertion is supposed small enough not to reach prompt criticality. Due to the very 

different timescales of prompt and delayed neutrons (ℓ ≪ min
�

�

�(�)), we assume to be at a 

time � such that ℓ ≪ � ≪ min
�

�

�(�) and write that the ��(�) have not had enough time to 

change significantly (because � ≪ min
�

�

�(�)) but that an equilibrium �� on prompt neutrons 

has been reached (because ℓ ≪ �):

0 =
� − �

ℓ
�� + � �(�)���

(�)

�

���

= (� − �) �� + � ��(�) ��

�

���

(46)

Hence, the prompt jump formula for point kinetics is:

��

��
=

�

� − �
(47)

For the multipoint equations, the derivation proceeds the same way (detail is given only 
for the Avery equations, but the derivation would be similar for the Kobayashi equations). 
Starting from a initial critical state with sources ���

� and equilibrium precursor 

concentrations such as ��
(�)�

��
� = �(�) ��

(�)�
, an instantaneous, prompt subcritical,

reactivity jump is performed, and the reactivity is kept constant at its new value. We 

assume again to be at a time � such that max
�,�

ℓ�� ≪ � ≪ min
�

�

�(�), so that the same 

assumptions as above hold and:

0 = (1 − ���)�����
�

− ���
�

+ � ���
(�)

��
(�)

��
�

�

���

(48)

Here are some definitions to introduce a more compact notation. � is the �-vector of 
generic element �� (with �� = ∑ ���

�
��� ), E is the identity � × � matrix, K the square 

matrix of generic element ���, �� its transpose. �(�) is the square matrix of generic 

element ���
(�)

, B the square matrix of generic element ��� , �(�) the square diagonal matrix 

of generic diagonal element ��
(�)

. Finally, �� is the fundamental eigenvector of the 
eigenvalue equation:

���� = ��� (49)

Eq.(48) is multiplied by ��
� and a summation over � and � is performed; with the 

notation <∙,∙> for the usual vector dot product we obtain:

0 = < ��, [� − (� ∙ �) − �] �� > + � < ��, �(�)�(�)�� >

�

���

(50)
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where � ∙ � represents the entry-for-entry (or Hadamard) product: (� ∙ �)�� =
������. Then:

< ��, ��� > = < ����, �� > = � < ��, �� >

< ��, ��� > = < ����, �� > = � < ��, �� >
(51)

We define average values for the global and delayed neutron fractions:

�̅ =
< ��, � ∙ � �� >

< ��, ��� >
=

< ��, � ∙ � �� >

� < ��, �� >

�̅� =
< ��, ∑ �(�)�(�)���

��� >

< ��, ��� >
=

< ��, ∑ �(�)�(�)���
��� >

� < ��, �� >

(53)

so that Eq.(57) can then be written as :

0 = (� − �̅� − 1) < ��, �� > + �̅�� < ��, �� > (54)

Dividing by � and rearranging, the prompt jump formula takes a form very similar to 
Eq.(47):

< ��, �� >

< ��, �� >
=

�̅�

�̅ − �
(55)

It now involves weighted amplitudes and delayed neutron fractions.

3. Numerical schemes to solve multipoint equations

3.1. Based on matrix algebra: the MATMPK solver

The point and multipoint problems involve systems of linear ordinary differential 
equations and hence can be cast into a vector differential equation:

��

��
= �(�)�(�) (56)

The state vector V contains the unknown functions: neutron sources and precursor 

concentrations (e.g. the ��� and the ��
(�)

for the Avery equations). Its dimension is (1 +
�) for PK, �(1 + �) for Kobayashi’s MPK and �(� + �) for Avery’s MPK. The transition 
matrix M contains the various kinetic coefficients, according to the form of the equations.
The formal solution of Eq.(56) over an interval of time ∆� is:

�(� + Δ�) = �(�) + � �(�)�(�)��
����

�

(57)

This remains a purely formal solution, as it involves the unknown vector �(�). In the 
specific case when the transition matrix M is constant, the exact solution is known:

� �������� ⇒ �(� + Δ�) = exp(∆� �) �(�) (58)

But in the general case, no closed formula is available, and the integral in Eq.(57) has to 
be approximated to work the problem out numerically. To this end, we shall use here the 
first simple Newton-Cotes quadrature formulas (see e.g. Abramowitz and Stegun, 1964, 
§25.4). Table 2 recapitulates the formulas used and their order. To simplify the formulas, 
we make use of the following notation for all functions and matrices in the “elementary” 
time interval [�; � + Δ�]: �� ≝ �(� + �Δ�).
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Table 2 – The Newton-Cotes quadrature formulas used in this work.

Rule name � �(�)�(�)��
����

�

= ⋯

Rectangle
Δ� ���� + O(Δt�)

Δ� ���� + O(Δt�)

Midpoint Δ� ��/���/� + O(Δt�)

Trapezoidal
Δ�

2
(���� + ����) + O(Δt�)

Simpson
Δ�

6
����� + 4��/���/� + ����� + O(Δt�)

Newton
Δ�

8
����� + 3��/���/� + 3��/���/� + ����� + O(Δt�)

The formula is said of order � if the order of magnitude of the neglected terms in the 
formulas above is O(Δt�). This is the order for the elementary time interval [�; � + Δ�]. 
But what is usually done is to repeat the formula over successive small interval of 
amplitude Δ� covering a large time interval �; the number of small intervals involved is 

then � =
�

��
, and this generally entails the loss of one order at the global scale: a method 

of order � on the elementary interval Δ� is then generally of order (� − 1) on the global 
interval � = �Δ� collecting the elementary intervals.

The elementary propagator ��→� is defined as the matrix changing �(�) = �� into 
�(� + Δ�) = ��. If E is the unit matrix, and using the above notation, the propagator can 
be expressed as

��→� = � + ∆� � �� �� ��
�

�

(59)

Eq.(58) gives the exact propagator when M is constant over time. In the general case, 
assuming �(�) is known, either explicitly (prescribed conditions) or iteratively, we shall 
now approximate this propagator to various orders.

3.1.1. Order 1: the Euler schemes

The rectangle rules are used. The left rectangle rule (see Table 2) is explicit and yields
the elementary propagator:

��→� ≈ � + ∆� �� (60)

This is the explicit Euler method, of global order 1. However, the problem to be solved is 
stiff because of the very different timescales involved for prompt and delayed neutrons, 
and explicit methods are known to behave poorly in such a case: they are unstable except 
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for very small (in practice) values of the elementary time step. For example, except if ∆�
is small enough, the dominant eigenvalue of the approximate propagator � + ∆� �� may 
exceed the dominant eigenvalue of the exact propagator (with same or different sign), 
resulting in catastrophic divergence after a sufficient number of elementary iterations. 
This extends to an explicit Taylor expansion of limited order; for example in the simple 

case when the transition matrix M is constant, the norm of the generic term 
∆��

�!
�� in the 

Taylor expansion of exp(∆� �) may well begin to decrease (not to say be of negligible 
norm) only after a very large � has been reached.

Implicit schemes are generally much more tolerant about the acceptable elementary 
intervals ∆� or may even enjoy unconditional stability. The right rectangle rule (see Table 
2) provides the simplest implicit scheme:

��→� ≈ (� − ∆� ��)�� (61)

This is the well-known implicit Euler method, of global order 1. It would remain of order 
1 if we replace �� by a matrix differing from it by a quantity O(Δt), e.g. �� or ��/�. We

shall use the latter hereafter:

��→� ≈ �� − ∆� ��/��
��

(61a)

3.1.2. Order 2: the Crank-Nicolson scheme

The trapezoidal rule (see Table 2) is used, and yields the elementary propagator:

��→� ≈ �� −
∆�

2
���

��

�� +
∆�

2
��� (63)

This is the Crank-Nicolson scheme (seminal paper reproduced in Crank & Nicolson, 
1996), of global order 2. This global order would be unchanged by replacing the 

trapezoidal rule by the midpoint rule and taking advantage of ��/� =
�

�
(�� + ��) +

O(Δ��), yielding a more “symmetric” formula for the propagator, still at global order 2:

��→� ≈ �� −
∆�

2
��/��

��

�� +
∆�

2
��/�� (64)

We will make use of the propagator given in Eq.(64) for the order 2 scheme. Besides the 
two classical propagators Eq.(61a) and Eq.(64) of respective global orders 1 and 2, we 
now turn on defining higher order propagators.

3.1.3. Order 3, from Simpson’s rule

Simpson’s rule (usually called Simpson’s 1/3 rule) states that, on the elementary interval:

�� = �� +
Δ�

6
����� + 4��/���/� + ����� + O(∆��) (65)

The local error drops to order 4 if ��/� is replaced by its development at local order 3

(backward Crank-Nicolson formula of Eq.(63)):
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��/� = �� +
Δ�

4
��/��

��

�� −
Δ�

4
��� �� + O(∆��) (66)

This results in the following propagator:

��→� = �� −
∆�

6
�� −

2∆�

3
��/� �� +

Δ�

4
��/��

��

�� −
Δ�

4
����

��

�� +
∆�

6
��� (67)

The global error is of order 3.

3.4. Order 4, from Newton’s rule

Newton’s rule (also called Simpson’s 3/8 rule) states that, on the elementary interval:

�� = �� +
Δ�

8
����� + 3��/���/� + 3��/���/� + ����� + O(∆��) (68)

The local error would remain of order 5 if we could express ��/� and ��/� at local order 4 

from �� or ��. This can be done using the previous propagator Eq.(67): the forward 
propagator from �� to ��/� is, at local order 4:

� = �� −
∆�

9
��/� −

4∆�

9
��/� �� +

Δ�

6
��/��

��

�� −
Δ�

6
��/���

��

�� +
∆�

9
��� (69)

And the backward propagator from �� to ��/� is, again at local order 4:

� = �� +
∆�

9
��/� +

4∆�

9
��/� �� −

Δ�

6
��/��

��

�� +
Δ�

6
��/���

��

�� −
∆�

9
��� (70)

Including these expressions into Eq.(68) and rearranging yields:

��→� = �� −
∆�

8
�� −

3∆�

8
��/���

��

�� +
∆�

8
�� +

3∆�

8
��/��� (71)

The global error is of order 4.

We stop here: this kind of formulas for approximated propagators become more and 
more complex when the global error order increases. Table 3 recapitulates the number 
of complex matrix calculations (products and inversions) needed at each elementary 
step. These complex operations may give rise to cumulated round-off errors when 
increasing the number of elementary intervals, spoiling the asymptotic global order �
behaviour for small elementary time intervals.

Table 3 – Complexity of the various schemes

Global 
order

Matrix 
products

Matrix 
inversions

Explicit Euler 1 0 0

Implicit Euler 1 0 1

Crank-Nicolson 2 1 1
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Simpson 3 2 2

Newton 4 7 5

The free and open source software Scilab (Scilab Enterprises, 2012) has been used to 
code the previous schemes into a tool called MATMPK. At this stage, with testing purposes 
in mind, no time step adaptiveness (a single elementary time step, chosen by the user, is 
used throughout the simulation), no possible remedies to the accumulation of rounding 
errors and no Richardson-like extrapolation have been envisaged. Scilab is used as a 
toolbox for matrix algebra operations. The next sections will be devoted to verification 
studies.

3.2. Based on stiff ODE solvers: the SACRE code

The SACRE (Solver for Avery’s Coupled Reactor Equations) code has been developed and 
verified at INL (Palmiotti et al., 2018). It implements and solves a variant of the coupled 
MPK equations obtained by Avery. Lumped feedbacks or reactivity and temperature 
types can be accounted for, in order to be able to investigate realistic transient accident 
scenarios. The main characteristics of the SACRE code are:

- only memory limitations to the numbers: of regions (�), of delayed neutron time 
families (�), of feedbacks;

- SACRE solves the initial value problem for stiff first-order ODE systems, using a 
linear multistep method based on backward differentiation formulas and chord 
iteration with an internally generated (by difference quotient) full Jacobian 
(Hindmarsh, 1983);

- reactivity variations (external or by feedback) are operated by changes in the 
coefficients of the coupling matrix K, through linear change or interpolation in 
“reactivity”, i.e. the 1/��� are assumed to have a piecewise-linear variation in time;

- the parameters for Avery’s equations (coupling coefficients and kinetic 
parameters) are computed externally on a predefined set of configurations and 
provided as input data; for the studies presented below, they have been computed 
using a recently developed (Aufiero et al., 2016) version of the Monte-Carlo code 
SERPENT (Leppänen et al., 2014); achieving low statistical uncertainty on all 
coefficients requires a large number of neutron histories for complex geometries, 
specially for coefficients coupling small and/or far away regions (typical order of 
magnitude: 50 billion histories per configuration).

Note also that SACRE does not solve Eq.(34), but a variant of it, with coupling coefficients 

for delayed neutrons equal to those for prompt neutrons (���
(�)

= ���), region-wise decay 

constants for delayed neutron precursor families ��
(�)

, and lumped values ��� = �� (with 

∑ ��
(�)�

��� = ��):
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⎩
⎪
⎨

⎪
⎧ℓ��

����

��
= (1 − ��)����� − ��� + � ��

(�)
�����

(�)

�

���

���
(�)

��
= ��

(�)
�� − ��

(�)
��

(�)

(72)

Furthermore, only the coupling coefficients ��� are assumed to change during the 
transient, all other parameters have constant values.

4. Verification of MATMPK on point kinetics benchmarks

Restricting to prescribed reactivity insertions (no feedback), we apply the previous 
methods to three point kinetics benchmarks (Ganapol, 2013). A point reactor is initially 
stationary, at zero reactivity, and three kind of reactivity insertion are performed:

- step (4 variants: –1/–0.5/+0.5/+1 $ – objective: amplitude after 100 s)

- ramp (+0.1 $/s – objective: amplitude after 11 s)

- sinusoidal (amplitude 0.675 $, period 100 s – objective: amplitude after 100 s)

For the step and ramp reactivity insertions, 6 delayed neutron families are used, whereas 
only one delayed neutron family is used for the sinusoidal reactivity insertion. 10-digit 
benchmark values are provided for the neutron population (Ganapol, 2013): see Table 4. 
The objectives quoted above are the most challenging in the benchmarks for the three 
types of reactivity insertion.

Table 4 – Objectives for the benchmarks (Ganapol, 2013) – initial amplitude value = 1

Benchmark Amplitude after… 10-digit value
Step –1 $

100 s

2.866764245E–02
–0.5 $ 7.158285444E–02
+0.5 $ 8.006143562E+07
+1 $ 2.596484646E+89

Ramp, 0.1 $/s 11 s 1.792213607E+16
Sinusoidal 100 s 1.544816514E+01

For the step insertions (constant transition matrix M), the exact solution may be obtained 
separately by matrix exponentiation, a matrix function available in Scilab. The behaviour 
of the schemes of first to fourth order in MATMPK is illustrated in Fig. 1, showing the 
relative errors with respect to the presumably exact solution computed by matrix 
exponentiation. For the ramp and sinusoidal insertions, we use the 10-digit results given 
in Table 4 as references and plot the relative errors (Fig. 2). Finally, Table 5 collects the 
CPU times needed per elementary time step. These CPU times have been assessed on the
calculations with the finest time steps used, as the global simulation times are here 
proportional to the number of elementary time steps subdividing the global time interval. 
All given CPU times are relative to an Intel Xeon CPU E5-2620 v3 @2.40 GHz processor 
with Gnome 3.14.1 Linux OS. They are obtained using the timer() command in Scilab.

Table 5 – Typical computation times (µs per time step)

Approximate elementary propagator
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Benchmark
Number of 
time steps

Euler 
Implicit

Crank-
Nicolson

Simpson Newton

Step –1 $

106

56 59 70 113

–0.5 $ 58 60 74 115

+0.5 $ 57 60 74 116

+1 $ 58 60 73 113

Ramp, 0.1 $/s 1.1 106 151 154 261 420

Sinusoidal 106 84 87 125 185

   

   

Fig. 1. – Relative errors with respect to exact (double precision) solution as functions of 
time step size for the four step insertions: –1 $ (upper left), –0.5 $ (upper right), +0.5 $ 

(lower left), +1 $ (lower right), and the four approximate propagators.
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Fig. 2. – Relative errors with respect to the 10-digit reference solution (Table 4) as 
functions of time step size for the ramp insertion (left) end the sinusoidal insertion 

(right).

The log-log plots in Fig.1 and Fig.2 show directly, and confirm, the integer slopes 
corresponding to orders 1 to 4. There may be a transient adaptation for large elementary 
time intervals. On the other hand, saturation is reached for very small elementary time 
intervals for the higher order methods (orders 2, 3 and 4); this is presumably due to the 
accumulation of round-off errors. Scilab operates in double precision (i.e. on approx. 16 
digits); it is expected that for a tool working in quadruple precision, this saturation would 
be postponed to much smaller relative errors. Nevertheless, the methods of order 3 and 
4 allow reaching very good precision (say 5 to 8 exact digits) with a very limited expense
of calculation time. Calculation time may not be a problem for PK equations with (1 + �)
unknown functions, see Table 5, but could become one for MPK problems, with �(1 + �)
unknown functions (Kobayashi), and even more with �(� + �) unknown functions 
(Avery), when increasing the number � of physically meaningful regions used.

5. Simple multipoint MATMPK verification tests

5.1. A fast reactor core 3-region model

We use an early sodium-cooled fast reactor ASTRID CFV core design (Varaine et al., 
2011), see Fig.3. A very similar model has been used also for recent SACRE studies 
(Palmiotti et al., 2018). The core, having a 2/3 rotational symmetry with control rod 
banks at the same insertion level, is divided in three regions respecting this rotational 
symmetry and also pictured in Fig. 3. In this simple core division, devised for testing 
purposes only, each region includes both inner and outer fuel subassemblies. The circled 
rod subassembly in Fig.3 is the one moving in the ramp reactivity transient studied below.

5.2. The calculation of MPK coefficients

These coefficients are computed using the ERANOS code system (Ruggieri et al., 2006). 
Fluxes and weight functions are computed in diffusion theory with 33 energy groups, 
using JEFF-3.1.1 data (Santamarina et al., 2009) and delayed neutron data in � = 8 time 
families. The various coefficients needed for the MPK equations are computed using the 
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perturbation theory capabilities of the code and according to the formulas collected in 
Table 1. Calculation is automatized by means of the user’s language of ERANOS.

Fig. 3. – Na-cooled fast reactor core used (ASTRID), its division into 3 regions and 
(circled) the control rod position used for the rod withdrawal transient. Yellow = inner 
core; red = outer core; light blue = steel-based reflector; grey = radial shielding; dark 

blue and black = control and shutdown rods; white = diluent rods.

As an illustration, examples of multiplication factors, coefficients and static MPK 
distributions (direct and adjoint) for the reference case (labelled 0) and the case when 
the circled control rod in Fig. 3 is raised by 35 cm (labelled 1) are given respectively in 
Table 6 and Table 7. It can be observed that, for the reference core with 2�/3 rotational 
symmetry, the coupling matrix reflects this rotational symmetry, i.e. ��� = ��� = ���, 
��� = ��� = ��� and ��� = ��� = ���, but with small differences (��� ≠ ���) as the 
boundaries used for splitting the core into three regions are not invariant under the 
mirror symmetries of the real core (e.g. the mirror symmetry with respect to the 
“vertical” line through core centre in Fig. 3).
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The coupling coefficients, as constructed, respect the neutron balance in the core; this 
means that the fundamental eigenvalue (�) and fission source distribution (�) are the 
same when computed from the coupling matrix K built indifferently from Kobayashi or 
Avery coefficients, and identical to the values computed on the full core model. However, 
this has no reason to extend to the fundamental adjoint source distribution (��) of the 
adjoint (transpose) matrix ��, except if symmetries impose the same distribution, as in 
the reference core.

The ℓ�� in the Avery model show that neutrons take more time to travel between distant 
regions than within a single region (e.g. here ℓ�� ≫ ℓ��); however, as only a small 
proportion of neutrons born in a region give rise to next generation in another region 
(e.g. here ��� ≪ ���), we have ℓ(��) ≈ ℓ�� ≈ ℓ�� ≈ ℓ��.

Table 6 – Some of the MPK coefficients (reference core). PK integral values: �� =
1.00313, �� = 375.2 pcm, ℓ� = 0.3801 µs.

Coupling matrix (���)

Kobayashi: �� = �
0.92485 0.03917 0.03910
0.03910 0.92485 0.03917
0.03917 0.03910 0.92485

�

Avery: �� = �
0.92804 0.03756 0.03754
0.03754 0.92804 0.03756
0.03756 0.03754 0.92804

�

Static fission source 
distributions 
(normalized)

�� = �
0.33333
0.33333
0.33333

� ��
� = �

0.33333
0.33333
0.33333

�

Delayed neutron 
fractions (���), pcm

Kobayashi: �� = �
374.8 365.5 363.8
363.8 374.8 365.5
365.5 363.8 374.8

�

Avery: �� = �
376.0 365.7 363.9
363.9 376.0 365.7
365.7 363.9 376.0

�

Generation times (ℓ�

or ℓ��), µs

Kobayashi: ℓ� = �
0.4277
0.4277
0.4277

�

Avery: �� = �
0.3613 0.6154 0.6126
0.6126 0.3613 0.6154
0.6154 0.6126 0.3613

�

Table 7 – Some of the MPK coefficients (control rod lifted by 35 cm). PK integral values: 
�� = 1.00616, �� = 375.3 pcm, ℓ� = 0.3815 µs.

Coupling matrix (���)

Kobayashi: �� = �
0.94152 0.04438 0.04351
0.03524 0.92123 0.03798
0.03402 0.03743 0.92150

�

Avery: �� = �
0.95226 0.03766 0.03561
0.03820 0.92029 0.03489
0.03616 0.03488 0.92116

�
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Static fission source 
distributions 
(normalized)

Kobayashi �� = �
0.40472
0.30000
0.29528

� ��
� = �

0.34886
0.32574
0.32540

�

Avery �� = �
0.40472
0.30000
0.29528

� ��
� = �

0.40828
0.29827
0.29344

�

Delayed neutron 
fractions (���), pcm

Kobayashi: �� = �
375.2 365.7 364.1
362.6 374.5 364.9
364.3 363.3 374.5

�

Avery: �� = �
376.6 365.1 363.3
363.2 375.6 364.9
365.1 363.2 375.6

�

Generation times (ℓ�

or ℓ��), µs

Kobayashi: ℓ� = �
0.4317
0.4291
0.4293

�

Avery: �� = �
0.3690 0.6161 0.6145
0.6115 0.3588 0.6214
0.6162 0.6178 0.3595

�

5.3. Verification : step insertion test

We assume the core to be critical in the reference state, i.e. the coupling matrices �� and 
�� are divided by the dominant eigenvalue of the reference state (��). Starting from a 
stable reference state, the control rod circled in Fig. 3 is instantaneously lifted by 35 cm, 
inserting a reactivity � = 0.00301 < �. The transient is studied from 0 to 1 second. For 
this step insertion, the exact final value can be computed by matrix exponentiation. A PK 
step insertion of the same amount of reactivity is also simulated for comparison. The 
convergence behaviour of the 4 propagators used is given in Fig. 4 (absolute value of the 
relative error on the global amplitude with respect to the exact solution vs. elementary 
time step size). For this transient, the propagators of odd order (implicit Euler and 
Simpson) behave better than the even order ones (Crank-Nicolson and Newton).

   

Fig. 4. – 3-point MPK core test: step insertion. Kobayashi formulation (left), Avery 
formulation (right)
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Computation times (Table 8) increase with the size of the problem, even if here, with � =
3 and � = 8, the sizes of the matrices involved remain modest: 9 × 9 (PK), 27 × 27 (MPK, 
Kobayashi) and 33 × 33 (MPK, Avery). Anyway, values exact to 5-8 places can be 
obtained using the Simpson propagator with a limited number of time steps, resulting in 
very short computation times (< 1s).

Table 8 – 3-point MPK core tests: computation times (µs per time step) for the finest 
time steps used

Approximate elementary propagator

Case
Euler 

Implicit
Crank-

Nicolson
Simpson Newton

Step PK 56 59 72 112

MPK (Kobayashi) 125 150 280 638

MPK (Avery) 167 196 355 954

Ramp PK 151 154 266 405

MPK (Kobayashi) 1470 1510 2997 4738

MPK (Avery) 4615 4632 9321 14550

Starting from 1 at � = 0, the amplitudes (= ∑ ��
�
��� ) reached at � = 1 s are very similar; 

their 5-digit rounded values are 31.996 (PK), 33.483 (MPK, Kobayashi) and 31.317 (MPK, 

Avery). The time constant for the prompt jump in amplitude is (PK) 
ℓ

���
≈ −5.1 10�� s 

for a jump by a factor 
�

���
≈ 5.1; this is reflected by the plot given in Fig. 5 (left). The 

relaxation time for the fission source distribution adjustment to the new asymmetric 
asymptotic distribution is expected to be of the order of a few generation times (ℓ ≈ 0.4
µs), the asymptotic shape being close to the static fission source distribution (see �� in 
Table 7). This is also confirmed by Fig. 5 (right).

   

Fig. 5. – 3-point MPK core test: step insertion. Prompt jump in amplitude (left) and 
shape adjustment (right) of the fission source distribution.

5.4. Application to a reactivity ramp test
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Here, starting from a stable reference state, the control rod circled in Fig. 3 is 
progressively lifted by 35 cm, inserting a reactivity � = 0.00301 < �. The transient is 
studied from 0 to 1 second. In each of the three variants (PK, Kobayashi-MPK and Avery-
MPK) all kinetic parameters and coupling coefficients are assumed to vary linearly with 
time between their initial and final values. This means that the transients do not 
represent the same physical scenario anymore, as for example the variations in time of 
the multiplication factor are no more the same. For the PK transient, the multiplication 
factor � varies linearly in time; for the MPK transients it is the coupling matrix K that 
varies linearly in time, and no more the multiplication factor (the dominant eigenvalue of 
K). The variation laws of the multiplication factor are plotted in Fig. 6.

Fig. 6. – Variation law of the multiplication factor in the ramp tests (PK and 3-point MPK
with Kobayashi’s and Avery’s models)

The global reactivity change from � = 0 to � = 1 s is given by the exact perturbation 

formula Δ��� =
���

�,�� ���

���
�,���

≈ 0.00302, whereas the first-order perturbation formula, 

giving the slope of the �(�) curve at � = 0 is Δ��� =
���

�,�� ���

���
�,���

; this gives Δ��� ≈ 0.00247

with the Kobayashi K matrices, but only Δ��� ≈ 0.00057 with the Avery K matrices.

The convergence behaviour of the propagators used is given in Fig. 7. Having no external 
benchmark solution here, the reference used to compute the relative error is a 
Richardson extrapolated value for the Simpson propagator obtained for ∆� ∈
[10��; 10��], as in this elementary time step interval an asymptotic order 3 for the 
Simpson propagator seems to be reached (see Fig. 7). For the Simpson and Newton 
propagators, the asymptotic order behaviour (order 3 or 4) is reached only for small 
elementary time steps and is at least partially masked by its subsequent degradation due 
to round-off error accumulation.
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Fig. 7. – 3-point MPK core test: ramp insertion. Kobayashi formulation (left), Avery 
formulation (right)

Computation times per elementary time step are also given in Table 8. They increase 
noticeably with respect to the step reactivity insertion cases. However, the only 
difference between the step and the ramp cases is that in the step cases, the transition 
matrix step M is computed only once, whereas for the ramp cases M has to be computed 
1 (Euler implicit and Crank-Nicolson), 2 (Simpson) or 3 (Newton) times per elementary 
time step. It is then supposed that the interpreted (slow) part of the code script, mainly 
devoted to fill in the matrix M at various time steps is the bottleneck with respect to 
computation time, as opposed to the compiled (fast) part devoted to matrix algebra, i.e. 
here mainly matrix products and inversions. Anyway, good accuracy (at least 5 digits on 
the final amplitude) can be obtained still with the Simpson or Newton propagators at 
limited time expense (< 1s).

Amplitudes and shapes are plotted in Fig. 8 and qualitatively match expectations: for final
amplitudes, Avery MPK < Kobayashi MPK < PK due to the time law of reactivity insertion 
shown in Fig. 6; and there is a continuous shape adjustment to values close to the 
dominant eigenfunction of the current coupling matrix �(�), due to very small generation 
times.

   

Fig. 8. – 3-point MPK core test: ramp insertion. Progressive adjustment in amplitude 
(left) and shape (right) of the fission source distribution.

6. Verification checks with SACRE
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The verification in Section 5.4, although satisfactory, is a partial one, as it lacks numerical 
comparison against exact solution or results from other MPK solvers. We have chosen to 
check MATMPK against the existing SACRE code on a simple MPK transient, taking 
advantage of the fact that SACRE calculations on transients similar to those studied in 
Section 5.4 (PK + MPK reactivity ramp in an ASTRID-like core divided in three azimuthal 
regions) have been performed already (Palmiotti et al., 2018). We reproduce one of them 
with MATMPK; Eq.(72) is solved, with the exception that, as coded in MATMPK, only one 
set of delayed neutron time constants �(�) with � = 6 delayed neutron time families is 
used (in this core, there is a very small region-wise variation for these parameters).

The transient modelled is the progressive extraction of a single rod (analogous to the 
extraction of the circled rod in Fig. 3). The PK model for this transient assumes a linear 
insertion of 713 pcm in 8.5 seconds, i.e. a constant reactivity insertion speed of 84
pcm/s, with no feedback (a possible feedback could be an emergency scram). In the MPK 
model for this transient, the core is divided in three azimuthal regions as in Fig. 3, the 
coupling matrix K is computed for the rod in and the rod out states, and is interpolated 
this way:

1

���(�)
=

1

���
���_�� +

�

8.5
�

1

���
���_��� −

1

���
���_���

This interpolation method is similar, for each coupling coefficient ���, to the linear 
reactivity interpolation in the PK transient, as in PK this means a linear variation for the 
inverse of the multiplication factor.

Table 9 collects some results obtained after 2 seconds of reactivity insertion. At the 
beginning of the transient (� = 0), the global amplitude is set to one, and the relative 
amplitudes in the almost symmetric initial core are very close to 1/3 each. The agreement 
between SACRE and MATMPK is excellent, but one question arises: why does the MPK 
transient, meant to represent a similar reactivity insertion as the PK transient, result in 
so different amplitudes after � = 2 seconds? This question was already raised by the 
results presented in (Palmiotti et al., 2018) where, depending on the choice of the shape 
and number of regions, modelling – presumably – the same transient ended up in very 
different time behaviours for the total amplitude.

The answer has already been given incidentally in Fig. 6 above: a given variation law for 
the coupling coefficients ��� does not imply the same variation law for the dominant 
eigenvalue � of the resulting time dependent coupling matrix K: �, being the dominant 
solution of the (� + 1)��-degree algebraic equation det(�� − �) = 0, is a non-linear 
function of the coupling coefficients ���. We have the same qualitative behaviour as in 
Fig. 6 here; Fig. 9 gives the quantitative picture of it in the interval from 0 to 2 seconds.
An obvious remediation for this discrepancy would be to perform the calculation of the 
coupling matrix over points in a time grid tight enough to make the interpolated reactivity 
variations within the time grid intervals almost independent from the model used (PK, 
MPK with various region patterns).
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Table 9 – Comparison MATMPK/SACRE on PK and MPK transients. Amplitude (global 
source �) at � = 2 second; for the MPK transient the relative region-wise sources �� =

��

�
are given also, at � = 2 second.

SACRE MATMPK

PK � = 2.51183 � = 2.51173

MPK, 3 azimuthal 
regions

� = 1.23593 � = 1.23680

�

�� = 0.329744
�� = 0.329121
�� = 0.341137

�

�� = 0.329738
�� = 0.329110
�� = 0.341152

Fig. 9. – Reactivity inserted as a function of time in the PK and MPK transients used for 
the SACRE/MATMPK comparisons. For the 3-region transient, reactivity is computed as 

�(�) = 1 −
�

����(�)
, where ����(�) is the dominant eigenvalue of the interpolated coupling 

matrix �(�).

7. Conclusion

After recalling the derivation of Kobayashi’s and Avery’s sets of multipoint kinetic
equations, these equation systems have been solved numerically by using matrix algebra 
software and 1st to 4th order implicit schemes based on single-step matrix propagators. 
The resulting tool, named MATMPK, has been verified on demanding point kinetics 
benchmarks (10-digit benchmark values, large amplitude variations) with various 
prescribed reactivity insertions. At this stage, no refinements such as adaptive time step 
size or extrapolation have been used but, even then, the 10-digits objective can be met
easily using the higher order propagators (orders 3 and 4). “Practical” accuracies (say in 
the 5-digit range) can be obtained with these 3rd or 4th order propagators using a limited 
number of time steps and calculation time. However, the accumulation of round-off 
errors prevents reaching relative accuracies much tighter that 10-10 for very small time 
step sizes with the simple schemes and double precision software used.
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As a next simple verification test, a 3-region fast reactor core model was built and the 
coefficients involved in the multipoint kinetics equations computed using the ERANOS 
code system for i) a reference symmetric state with all control rods inserted at the same 
height and ii) an asymmetric configuration corresponding to the extraction of a single 
control rod. Step and ramp reactivity insertions were modelled with MATMPK and the 
results checked successfully against exact analytical solution (step insertion) or physical 
intuition (ramp insertion). A final check of MATMPK has been performed, on a ramp 
insertion, against the existing SACRE MPK code developed at INL and the results 
produced by the two codes were found in excellent agreement, on amplitude and shape.
Usually, MPK coefficients are computed on a discrete set of points in time and 
interpolated in between; it has been shown that care must be exerted to ensure that this 
grid of time points is tight enough for the interpolated values to remain representative of 
those obtained asymptotically for an extremely tight time grid.

Globally, these are promising results and prospects for future improvement in MATMPK
are: refined resolution strategies such as adaptiveness criteria for non-uniform time step 
sizes and Richardson-like extrapolation methods, shift to a fully compiled code to reduce 
computation times when dealing with “large” numbers of fissile regions and/or feedback.
On the longer term, a versatile, fast and accurate multipoint kinetics capability will prove 
useful for zero-power reactor experiment design, specially in the case of fast-thermal 
coupled systems (as was the initial motivation for Avery’s coupled reactors theory), but 
also possibly for inclusion in quasi-static space-time kinetics methods, aiming at adaptive 
shape time step prediction and region-wise level adjustment for the flux initialization of 
shape calculations.
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Appendix – Derivation of the PK model

A single, time-independent, weight function � is used and the “amplitude” � is defined
as the weighted neutron population for the whole reactor:

� = < �,
1

�
Ψ > (73)

When looking at variations starting from and remaining close to an initial critical state, 

the usual choice for the weight function is an adjoint static flux Φ�
�(�⃗, �, Ω��⃗ ) for this initial 

critical state, i.e. a solution of:

(��
� − ��

�) Φ�
� = 0 (74)

We also define the forward static flux Φ�(�⃗, �, Ω��⃗ ) for the initial critical state, solution of:

(�� − ��) Φ� = 0 (75)
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Eq.(74) and Eq.(75) are homogeneous and their solutions need a normalization condition 
to be unequivocally defined. For example, Φ� may be normalized to the initial reactor 
power and then Φ�

� normalized so that the initial amplitude is one:

�� = < Φ�
�,

1

�
Φ� > = 1 (76)

We can then write in the right-hand side of the flux equation in Eq. (8):

< Φ�
�, ��� − ��Ψ > = �

< Φ�
�, (� − �)Ψ >

< Φ�
�, �Ψ >

−
< Φ�

�, ��Ψ >

< Φ�
�, �Ψ >

�
< Φ�

�, �Ψ >

< Φ�
�,

1
� Ψ >

�

≝
� − �

ℓ
�

(77)

where we have defined the kinetic multiplication factor (�), reactivity (�), delayed 
neutron fraction (�) and generation time (ℓ) as:

� =
���

�,���

���
�,���

� = 1 −
�

�
� =

���
�,����

���
�,���

ℓ =
���

�,
�

�
��

���
�,���

(78)

And in the right-hand side of the precursor equations in Eq. (8):

< Φ�
�, ��

(�)
��

(�)
Σ�Ψ > =

< Φ�
�, ��

(�)
��

(�)
Σ�Ψ >

< Φ�
�, �Ψ >

< Φ�
�, �Ψ >

< Φ�
�,

1
� Ψ >

� =
�(�)

ℓ
� (79)

�(�) is the delayed neutron fraction associated to precursor family number �. We define 
also an effective delayed neutron precursor concentration for family number � by:

��(�) = < Φ�
�, ��

(�)
�(�) > (80)

Finally the PK equations may be written as:

⎩
⎪
⎨

⎪
⎧��

��
=

� − �

ℓ
� + � �(�)��(�)

�

���

���(�)

��
=

�(�)

ℓ
� − �(�)��(�)

(81)

The total number of equations is (1 + �). At this stage all the involved coefficients are 
written using the unknown dynamic flux ; they can be approximated by using instead 

of  the static flux  of the associated critical problem, solution of �
�

��
− �� Φ = 0; here 

�� is the multiplication factor of the critical (static) problem associated to the operators 
F and A and may differ slightly from the dynamic multiplication factor � defined in 
Eq.(77) with the real kinetic flux . Finally, the set of approximate point kinetic 
parameters is:

� ≈
���

� ,���

���
� ,���

� ≈
���

�,����

���
�,���

�(�) ≈
���

�,��
(�)

��
(�)

����

���
� ,���

ℓ ≈
���

�,
�

�
��

���
�,���

(82)
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